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LIST OF SYMBOLS -

]P received signal power, watts

Pt transmitter power, watts

G transmitting antenna gain in the target direction

G receiving antenna gain in the target direction

ab bistatic radar cross-section, square meters

D transmitter to target distance, meters

: r receiver Lo target distance, meters

pL (t) propagation loss over The transmitter to target path

L (r) propagation loss over the receiver to target path

L system loss

A wavelength, meters

U power density at the receiver, watts per square meterrj

Ut power density at the target, watts per square meter

unit vector in the direction of the reflected ray

k unit vector in the direction of the transmitted ray

St distance from the target to the point of observation--may
include or exclude the receiver

N unit vector normal to and outward from the prolate spheroidal
surface

P(xy,z) point on the prolate spheroidal surface

B unit vector tangent to the circle formed by a plane intersecting
the prolate spheroid norrnal to its axl ..... ___Aocession Fcr

f • unit vector normal to N and bTIS '. -
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J1.0 INTRODUCTION

Early experimental radar systems were predominantly of the bistatic

type, where the transmitting and receiving antennas were usually separated

by a distance comparable to the target distance [1] - [2]. When the du-

plexer was developed at the Naval Research Laboratory in 1936, a means

of using the same antenna for transmitting and receiving made monostatic

(one site) radar feasible. Bistatic radar became dormant until the early

1950's, when interest revived [1]. !nterest has increased with the develop-

ment of low level cruise missiles in 1978, when the need fcr bistatic cross-

section results became apparent for missile guidance and target detection.j
Bistatic radar s-,stems utilize two separate locations. The radar

transmitter is found at one location, while the radar receiver is found

at another locaLion. Ir. some configurations, tý;e radar transmitter

might be located ;n a B-52 airplane and the radar receiver might be

located in low =Ititude offensive air-to-ground missiles such as theU AGM-69A. Ii other confiqurations, the radar transmitter would be located

on the ground to control several ground-to-air defensive missiles. In

"II" the first example, the target could be an enemy missile silo or ground

radar system. In the second example, it would be either the attacking

offensive missiles or a B-52 guidance and control airplane. The parameters

for detection include Doppler frequency shift from the target, signal

frequency, and bistatic radar cross-section created by the target. This

study is limited to the bistatic cross-section of a typical target. A

prolate spheroid was selected because it resembles an air cruise missile.

The air inlets and tail fins were not included in the analysis prazc.7ted

here. Results are presented in the form of bistatic cross-sections and
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the computer program to generate additional cross-sections for prolate

spheroids with different major to minor axis ritios.

2.0 BISTATIC RADAR CROSS-SECTIONS

The purpose of this study was to formulate the bistatic radar cross-

section of a perfectly conducting prolate spheroid when the prolate

spheroid is large compared to the wavelength of the incident radiation.

There are many studies [3] - [7] on the monostatic backscatter from small

prolate spheroids (prolate spheroids whose size is comparable to wave-

length) and also with studies of field distributions at the boundary of

the shadow where diffraction effects must be considered, but these are not

considered here. Objects are almost always large compared to wavelength

in detection applications, and detection is seldom done near the shadow

region. In the region that we are concerned with, the geometrical theory

of optics can be applied, and can be used to generate sore insight into

the bistatic cross-sectional area as a function of the spatial coordinates.

Theory:I

The bistatic radar equation can be written in the following manner:

__ab____ I PG. PtGt G 2

r 4 2 L (r) s 4rD 2L (t)

where the symbols are defined in the prefix of this report. Eq. (1) is

L [arranged to emphasize the motivating analysis in the derivation of the

radar equation. The power density Ut reaching the target is

PtGI = t (2)
t 4 rOt -2 L (t)

p=



the effective capture area of the receiving antenna is

2I
G Xr (3)

where I-/4,T is the universal antenna constant, and the power density U
r

at the receiving site is

4,P L
U - r s (4)r G 2

GX
r

The system loss is assumed to occur only at the receiving system. Although

it actually occurs in various locations, the exact location or even its

existence do not effect the subsequent analysis. The use of Eqs. (2) and

(4) can rewrite Eq. (1) as

U b U (5)
r 4-.D 2L (r) t

r p

and the form of cb suitable for computation is

2L r
ab 4-TDr p(r) L ' (6)

t

a,,d to numerical formulation if Ur can be found when Ut is given.
Figure I shows the case from geometrical optics of an incoming ray,

k, being reflected from a point on a curved surface in the direction, k'.

A very important point arises here with respect to the prolate spheroid.

Since the object is convex, a one-to-one corresponidence exists between

reflection points and receiving points. As such, no interference exists

between reflection points, and U. can be described simply by k' and how

energy density decreases as a function of distance between the reflection

point and observation point. In other words,
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U t
U-r(7

spread (tc') (7)

where spre3d(t-k') is a function describing the spreading out of energy

as one travels in the r' direction. I
Figure I also shows the coordinate system that is to be imposed at I

each point of the prolate spheroid. The prolate spheroid is described

by the equation:

2+ 2 2x 4. zL = 1, (8

h 2 (u2 _ 1) £2 u2

which generates an outward normal unit vector at a point P - (x,y,z):

2_j
N C(x,y,z U) (9)

u2

where

2
C (x2+y2+z2(u-"l) 2) 1/2 (00)

"" 2

It is convenient to define a coordinate system at P where N defines one 4

axis, and _

= (y,-X,O) (11)

x +y

and

'(12)1
define the other two. This choice of g is stimulated by the symmetry of

the prolate spheroid. ý is tangent to any circle defined by holding z

Kconstant and is normal to



6I

It is easily seen that the incident and reflected rays, k and

respectively, lie in a plane containing N at P(x,y,z). Without loss of

generality we can assume that both • and are unit vectors, and can

be written

k k - 2 (k. ) . (13)

Having found the direction of the reflected energy, it is now neces-

sary to derive an explicit expression for the spread function. Figure 2

demonstrates the underlying assumptions regarding the spread function.

It is readily seen that all the power reflecting from the rectangle in

the BT plane described by the sides XT and yB must pass through the surface

described by the tips of the vectors t k!. Define

R •T + tk tk• (14)

and

2 + - tO()

These vectors describe the sides of the rectangle at the tips of the

tk'. and the spread function can now be defined:

Slira (X16)
spread(tZu) =lin k RXAx2 (16)X,-0 k0' .kTx-(B

Equation (16) is still not in a form that is amenable to implemen-

tation on a computer, but it can be made so very easily by approximating

k', by the expression
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dZ

ki + , 0 ( )£ " 0 d-- -(X7

where

dk•0~ d Zk0 (x,y,z) + (18)

and k' similarly. Substituting Eq. (17) back into Eqs. (14) and (15)

gives

dkO'~ u~($ d•"0 (,9
RI - x(T + t - - ,(9

dk0 A

220
•2 Y ("+ t -d )X(0

and substituting these into Eq. (16) we finally arrive at:

spread (tk 0 )

d•k d0 dk0 dk0'

0 20
0 [- + t(- x + + dy] (21)

kd 0 N

0

The expre ssions involved in trying to evaluate j- are cumbersome

because it is necessary to know k' explicitly in terms of x, y, and z,

but by examining Eq. (13) we can get

d N-- dN
d - k - 2(k•N) (22)

and

dk -fd
( d•0'

d---= -2 (k*--)N - 2 (k' -dyN) - 2

dyk-N - (23)I fa Yd
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SEquation (9) gives N in terms of x, y, and z, and - and dN can be

calculated and are given by the following: t

=C (T xTyT ) u2

22 [ [z ( ] 2

-c [xT 4yT +zT~ (--) 1
U

dNu 2 -1 .(4

dN C(B AB B u-1)
TY xy z u2

"2 u-I 2 ] (25)

-C [xT +yT +zT (.2--) ]-N.

Finally, referring to Eq. (6)

C = 4 D (r) -L r (26)
b r p r) t

assuming that D r t and that L (r) - 1, we get
r p

42

b spread(tk0a) (21)

It will be noticed that Eq. (21) for the spread function involves terms

2
in 1, t and t . Cb is usually examined in the limit as t-. o b then

becomes

Cb d k' dk0 (28)

0ko" d- x d•

i
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3.0 RESULTS

Arpendix I is a listing of the program that was used to find the

bistatic cross-sectional area. SB is the cross-sectional area as given

by Eq. (28) while SIGMAB is the value given by Eq. (22), retaining the
-1 -2

t and t terms in the final expression.
Appendix 2 is a graphical representation of some of the results of

this program.

Figure 3 shows the coordinate system used to orient the prolate

spheroid in space. The major axis of the prolate is the z axis. The

transmitter is located in the y, z plane which, because of the symmetry

involved, does not affect the generality of the program.

Graphs 1-4 show Ob for various transmitter positions. The observation

plane is the y,z plane. The prolate spheroid has major axis one unit

long, and minor axis .33 units long. 0b is in square units. I
Graph 5 shows ob for a sphere of a radius one unit.

Graphs 6, 7, 8 show o in varying cases when the observation plane is

"not th: y,z plane. (These are all for a prolate spheroid with major to

minor axis ratio of 3:1). The observation plane in Graph 6 contains the

z axis, but is at 45' with respect to the y axis. In Graph 7, the obser-

vation plane is the x,z plane. In Graph 8, the observation plane is the x,

z plane, but rather than having the transmitter on the y axis as in Graphs

7 and 8, the transmitter is at 300 with respect to the z axis in the

y,z plane.

Graph 9 shows cb when the maior axis to minor axis ratio is changed

from 3:1 to 10:1. In all other respects, this is the same as Graph 2.

The observation distance was equal to 1000 units in all the graphs.
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It will be seen immediately that for a prolate spheroiti with major

axis, 1 unit, the maximum value of o is 7. Graphs 1-4 show that this

maximum value in the y-z plane is at 180' minus the transmitter angle which

is exactly as expected in terms of reflections, and g-ometrical optics.

It is also interesting to note that the patter;3 in Graphs 1-4 are exactly

the same except for being rotated in space.

Graphs 4, 6, and 7 show another aspect oT this pattern in space. 7he

pattern has maximum width in the plane containin, the tra~smitter and z axis,

and becomes increasingly narrow as we rotate the observation piane away

from the y,z plane. It is to be noted that the value of a b as we approach

the shadow becomes undeterminate. In the x,y plane, cb = 1T for all angles,

while in the y,z plane, ab approaches .02702.

Graphs 2 and 8 show the same behavior as Grap s 4,6 and 7, except that

the transmitter is now at an angle of 30* with respect to the z axis

rather than being on the y axis. Again, the pattern approaches being

infinitely thin, and is indeterminate as we approach the shadow.

Lastly, a comparison of Graphs 2 and 9 shows the effect of increasing
r

the major axis to minor axis ratio. If the prolate spheroid becomes

narrower the maximum value remains iT, but the pattern becomes much

narrower.

4.0 EVALUATION

The first question that must be asked is whether the results obtained

have any meaning. First, the monostatic cross-sectional area, aml for

a .rolate spheroid with the tran~m:tter on the z axis is a well-known

quantity [,• and

t
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,-u -1) 9(29) 1
U 2

uI

For a sphere, m = i=, which is within .I% of the value found using A

the program. For a prolate spheroid with majo' axis to minor axis ratio

3:1, (u = 1.05, Z = .95), the program gives ab .02702, while Eq. (29)

gives a = .02702. In fact, for ratios 3:1, 10:1, and 22:1, the agree- I
merit was exact. ÷

Second, the Crispin bistatic theorem [8] stipulates that given

transmitter and receiver directions, k and k' respectively, in the limit

of infinite distance, ab is equal to c as seen from the k and k'
m

direction. Table I gives a bana for various transmitter and receiver

locations. (The angles listed are with respect to the z axis).

As can be seen from Table I, there is close agreement between b

and am. The small discrepancies shown in the last two entries are easily

accounted for when we consider that since the distance is not infinite,

we are not looking at the same point on the prolate spheroid when calcu-

lating ab and am.

adcWe can conclude, then, that the program is giving meaningful numbers,

. and that these numbers do represent the bistatic cross-sectional area

of a prolate spheroid.

ft 5.0 CONCLUSIONIi ~The prolate spheroid is a convenient target for radar studies

because it is convex. From a geometrical optics point of view, this is

convenient because it implies that given an observation point, there is only

one point on the prolate spheroid at which reflection occurs. As such,

there is no need to account for the phase of the signal, Any surface that

II
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is convex at each point, and which has no two distinct points where the

outward normal vectors are in the same direction, can be handled similarly.

Hence, the program written could very quickly be changed to handle a figure

that is ellipsoidal in all the major planes, or even a parabola of revolution

that extends to infinity in one direction. It is simply a matter of being

able mathematically to describe the surface.

When the outward normal vectors are not distinct, it is necessary

ikr
to account for the e spatial variations in both the incident and

reflected fields. This can be done, but was beyond the scope of this

study in both computer funds and time available.

Such a program would be a major step forward in the ability to find

the bistatic cross-sectional area of arbitrary surfaces in space, where

it is not clear that the Crispin Bistatic Theorem is appropriate. This

would be an area for further study.

=I
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TABLE I

A COMPAR!SON OF b AND am FOR THE CRISPIN BISTATIC THEOREM

Transmitter Receiver
Location Location b m
(degrees) (degrees) (units). -:

(squared) at K + k'

300 -30Q .02702 .02702

L 600 -60° .02702 .02702

300 1500 3.126 3.126

0° 600 .04522 .04520

300 900 .26481 .26464

(The observation point Is 1000 units away).

[*1
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C THIS PROGRAm CAL-10LATES IhL 6ISTATtC CPOSS SECTIONhAL AREA OF A
C PROLATE SPI1EkO1'J, L AND U ARC PAPA'-ETESRS THAT OESCRIt4F THF
C SPH~EROID. U CAJq N'EVER BE LESS Tri~iq UN.

HEAL LIJTH-LIA,',oP(3) ,ý1,ESTKP(3-)Z
REAL K(3),b(3),!4(3),T(3) ,KPPI"'E(3),flLI'(3)
REAL DGr'd3),DLKP(3),C1 (3)pC;?(3),D)GKP(3)

* REAL FL(3) ,FG(3),SI3,()ISTSIC1Aýi&,OISPyrT(3)
PYTEGER I,J,fM,JTPINjCtY, INCA71,

A
LOGICAL TESI, RETESI
REAL MAG,ALPhA,cJETA,KLIsT

REAC)5,0) L A

200 FOR'iAT(FjQ.5)
PRIlrT, I U c
READ(S,200) U
PFIN~T, 'TmElA a
READC5,200) Tm-ETA

VVRITE(03, 10L4) LU,CTHETAA
10'4 FOR'-'AT(' L =',F6a4,p U eFfloi, THETA ',F8,0)

C t( IS 1HE VECTUR TH'Ai DES5hrlkS T'PE ultiFCi10N nFTHE INCOMING

PfiI[T,' 01STA.!Ct
REALP(5,201) 1-1bT

PPRIrT, ' lICl- OiF ALZG L ltj y (13)
REAIUCS,20?) I1-40
P1RI,,T, ' ll',Ch OF AjGLAI I,% Z (13) '

fREAI)Ce5,20?.) I-jCAZ
* 202 FOkV~AT(I3)

kETtET=.F4LzL.

bETA: J-1
BETA= PI*,AE1A/IIQ.O
DO 20 Ntlý1,11-,1CA/
IF (RETEST.Ai W.'. ) G i 2r)
IF ((- *o. I- .) ,ETESI = PW'~E.

ALPI-A = i'-1

C CrAVRT W4IES )HE 016TA!,CE A L) A' GLEA;, AVil r.'JP VEP-TS THESF TO THE
C PCP T rOhSIRE6.

CIL

11EC03I 5 U)ý "



TEST c OALSE.
C IF THE FPUV4T 1S Tuo CLL'SE IL 11Ff AXTS THAT K IS ON,
C THEN THE RtJOTIiS 9LC3vi 11P

* ~IF(TtST) 6u T' a4u-

IF(C.LE.L**2) TEST=.TIRuE.
* ~IF(TEST) ARITE(O3,1'07) 0 8SPNIT TY1 84ALL'

.107 FORMAT( 4,20)
IF(TESr) GO TO 20

F C THE PiROCIAm r4LGw GOES A6'JUT IYPUql'ta A 4 Nl T FRA'P'E W;~ T-4E

C SPHEROAU AT TI-E Pulij -)F LPEFLECTIiltJ. INCrDF~'T~t LV, IT "~UST FIRST

C FIND THE POIN~T OF REFLECTIUtc. '4E"'CFt FI',tIKP.I
CALL NUR?-l(OJSPNT,Cl)
CALL SU6(CCK#Cl)

CALL Njqt-i( C1I, 'J)

I Oo C=L* (U** 2- 1. 0/ST(C*a-.1)0Adl (1**24N+.Q)**2) +0?* (3)**2)I

CALL ADL'( IESK,EST-PI)

CALL

CALL ~U~'(1l

IrF(i.;A G(E ST K P) .6 T. I ,0E -'4) GO 1- I

410 IF(TE5T) ~I6~3 ') *11' T!'L l;~i-:A'l

IF(1LST) GL' TJ 201I
CALL SL~d(ý-(SP JT,ý CI)

C IT IS NFECý.SSA1,Y TJ 0l)~i o-li-E FE,'T(UPfS (IF Tt'C ClIIV4THRE OF THE
C SPHEWU11I AT T',L P014 J rF ii- L~CC1 1'11. ThFE DýPI'ATT\JES OF N AREI
C I t~tf.t, la TiE i, "WiA) T 01i l ' S. Lf"O'dF)AP V, 0 . CAM-A APE
C DI.>W-iY Cfrl,',)1L41t -)ES--.'1-ýIPIt I-,' Tl-E 1 (i l1F IJS

CALL 'E-l ry~ ')'

CAL( )'I ~,I,,'



C U)ING L)LN A.\i) UX'.. IT IS PI!SSlL~IYt M~ CALCULA~TE THE~ OEPIVAT1VF 0iF
C KPRIM,-'p THE VECrfjlý Fio> Tý'E PJI'J .11: THE P.S. TO) THPF nHSFRVATfln!,
C POINT, IN THE T-40 DIRECTI31,S, A';D TIPENJ TO Flt:fl THE SPREAO OF TH"E
C Rt)AOATICIN AS IT TqAV~t ; A.ýAY Fý,!)- 1-t P.Se

CALL SC;L(J('0pLrl
CALL SCLMLT(0UiTCOL"rK,),--,sC2)
CALL ADC(Cl,C2t'DLKP)
CALL ~L~L(~ ,)'PLP
CALL SCL~oL1CU0T(1,t#)rt,G',,C1)
CALL SCL4LT(ULJT(DGJl#P) ,*,C2)
CALL AOO(Cl,C2,0)('P)
CALL ADC1,C2,DGNPb)
CALL SCL,%LT(-2.0poDpF', ,GiP)
CALL CROJSS Lo, OG\P,C 1)
CALL CRUSS(DLiNP,i,C?)
CALL AUU(CCICaC)
CALL SCL-*lLrc1.0/i~tsl,, C 1 1C I
CALL SCL*ILT(l .Q/1,'ISr~**,',,C2)
CALL AUU(CICc2,CI)
C&LL CRJ)SS 0rPGw,2

C S4 IS THE tHtSTATIC C" JSssbCcrIiJ:jL ARLA IF VyE- I(,,ORE THE D AND
C L)**?u TEiz'os tj IhiE SPhK>) E7 rSSII

IFC,'ti.LT.0 .0)S$-.*3
CALL AUI'(C1,C2,C2)

C SIGN'AR IS Tt:L lqiE Cf".iSS$-E~CTIbu1L, LrEA.

SIC 31SI,
ARITE (03,1je) .i 'b, 1>M=',t!A

20 C (J iT ImJiE

STOP

H E A L F t aC ]'i .Cd

HEAL AU3),H ,C

Nt T-'RT 3

IP (L .LE.11f-u I -ýTE( 312) 11 V l'TJ1T'~ BY ZEPO
12 F(LRt-AT(' '.¶~

L4LL 3LL'LI(C,A,;-)



JBROuT INiE Fl.',)rmF(K,N,H-, 1, KPkIMF)
REAL ~3 r()~()T3,sIE3

REAL Cl (3),L2(3) ,-IAb

CALL dd,)

CALLscrL(20))k:).Cl
CALL AfI(K.,CjpKPkl'E)

RE N

SUJBROUTIN1E ADO()Ao,C) "
REAL A(3), 8(3), C(3)]
VrF(;EH I

10 CW4TINULF
REILRN;

SUBHOLiT1i\E Sud3(A,1rC)
REAL A(3),b(3),C(3)
IN~TEGERH 1

DO 10 1=1,3

10 CUNT 1:,uEI
RET LI I' v
E ii L)

SuOPCIuT11,E LC~L(¾iC

REAL 4,0(3) ,C (3)

V.G 10 1=1 3

kE T UR'i I

k F AL F U .C II J i) T (,k

0(-i 10 1=1,3

_ D:



REAL 403),130)v C(3)

RETURN,
E. N D

SUBRfUUTINE CU14VRIAb,,)
REAL AF~,Col)(3)
REAL P,f,
LOGILADL TEST
IEsr : .ALsL.

D(2) A*Sl.\C(-)
UM) A*CQS(.ýj)

IF(8IN(C)**e.LT.I.OE-lku) IEST *TQUE9

IF(IEST).~~U~

IF( CO~S(P) **2.LT. I 1 0-) P

IP(CUJS(C)**2.GT.1l vE-10) r;!-,C

kET U F

S Q Hk 0U TIt IirI .,' E 1,uE K I

REAL P(3),d(3)rlCoL)L,r(,),~

A C I) = p (1I)
A(2)=13(2)

CALL SCL'":L'l 0I. 0/N,.at(A) PýI,C)
CAiLLSt9L(UT(h),, '

CALLS'-C . Q)

E,\ Dlt
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Y Axis

Graph 1: Bistatic Radar Cross-Sectional Area of a Prolate Spheroid
(major to minor axis ratio 3: 1)
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Graph 2: c~b for a Prolote Spheroidl with the Transmitter at 30ow.r.t.
the Z Axis (major to minor axis ratio 3; 1)
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Graph 4: C~ for a Prolate SpHeroid with th~e Transmitter at 900 w r~t
the Z Axis (major to minor axis ratio 3: 1)
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Graph 5: ab for a Sphere of Radius 1 Unit
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Graph 7: C'b for a Prolate Spheroid with the Observation Plane Being
| the X, Z Plane (major to minor oxis ratio 3: 1)
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Graph 8: Ob for a Prolate Spheroid with the Transmitter at 300 w.r.t.
the Z Axis, with the Observation Plane being the X, Z Plane
(major to minor axis ratio 3:1,
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with the Transmitter at 300 w.r.t. the Z Axis
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